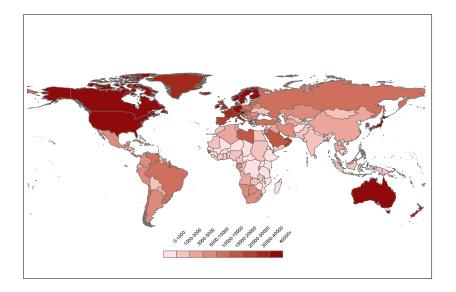
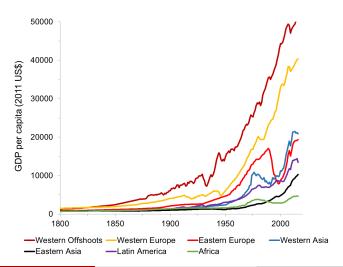
The Journey of Humanity Roots of Global Inequality

Oded Galor

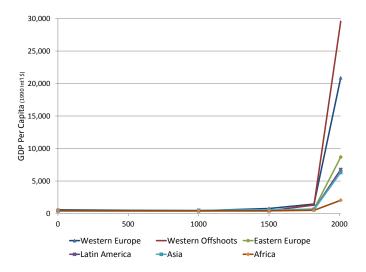
October 26, 2019


• The Mystery of Growth:

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?

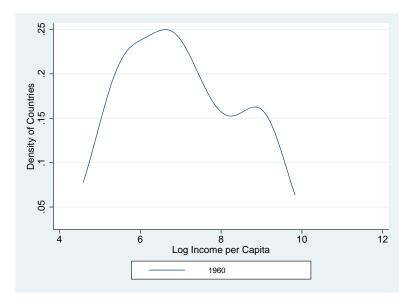

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps
 - What is the origin of the vast inequality in income per capita across countries and regions?

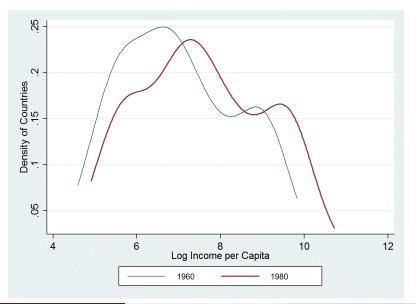

Inequality in the Wealth of Nations: Income per Capita, only2010

Regional Divergence: 1820-2010

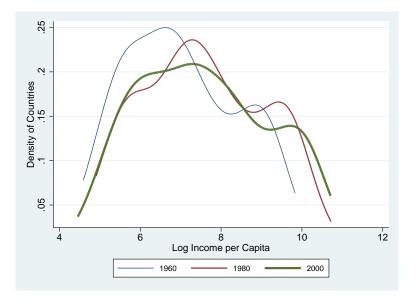
Regional Divergence: 1-2010

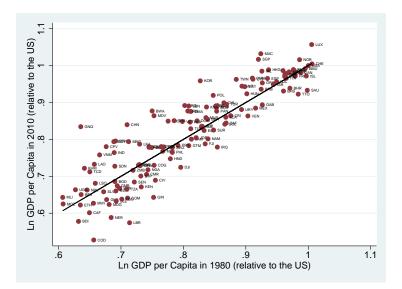

• Diminishing returns to physical and human capital accumulation

- Diminishing returns to physical and human capital accumulation
- Diminishing effect of technological progress on productivity


- Diminishing returns to physical and human capital accumulation
- Diminishing effect of technological progress on productivity
 - ullet Reduction in inequality

- Diminishing returns to physical and human capital accumulation
- Diminishing effect of technological progress on productivity
 - \implies Reduction in inequality
 - \Longrightarrow Convergence


Income Distribution in 1960


Lack of Convergence across Nations: 1960–1980

Lack of Convergence across Nations: 1960–2000

Persistent Inequality across Nations: 1980-2010

• The Mystery of Growth:

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps
 - What is the origin of the vast inequality in income per capita across countries and regions?

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps
 - What is the origin of the vast inequality in income per capita across countries and regions?
 - What accounts for the divergence in per-capita income across countries in the past two centuries?

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps
 - What is the origin of the vast inequality in income per capita across countries and regions?
 - What accounts for the divergence in per-capita income across countries in the past two centuries?
 - What are the factors that inhibited the convergence of poor economies toward richer ones in the past decades?

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps
 - What is the origin of the vast inequality in income per capita across countries and regions?
 - What accounts for the divergence in per-capita income across countries in the past two centuries?
 - What are the factors that inhibited the convergence of poor economies toward richer ones in the past decades?
 - What is the role of deep-rooted historical and pre-historical factors in the observed patterns of comparative development?

• Requires the identification of:

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process
 - The contribution of evolutionary forces in this process

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process
 - The contribution of evolutionary forces in this process
- Provides insights about:

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process
 - The contribution of evolutionary forces in this process
- Provides insights about:
 - Hurdles faced by LDCs in their transitions from stagnation to growth

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process
 - The contribution of evolutionary forces in this process
- Provides insights about:
 - Hurdles faced by LDCs in their transitions from stagnation to growth
 - Policies to expedite the transition of LDCs to modern growth

Historical Evidence

• Forces that operated in the distant past contributed to:

Historical Evidence

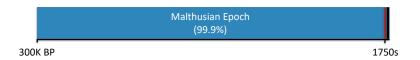
- Forces that operated in the distant past contributed to:
 - The timing of the transition from stagnation to growth

Historical Evidence

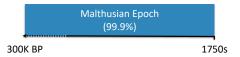
- Forces that operated in the distant past contributed to:
 - The timing of the transition from stagnation to growth
 - The vast inequality across countries and regions

Phases of Development

• The Malthusian Epoch

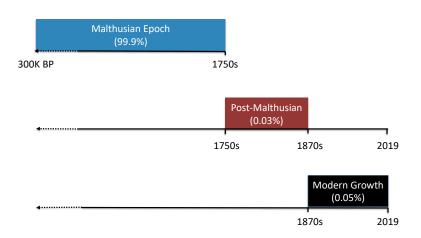

Phases of Development

- The Malthusian Epoch
- The Post-Malthusian Regime


Phases of Development

- The Malthusian Epoch
- The Post-Malthusian Regime
- The Modern Growth Regime

Phases of Development: Timeline of the Most Developed Economies



Phases of Development: Timeline of the Most Developed Economies

Phases of Development: Timeline of the Most Developed Economies

• Dualism: Stagnation & Dynamism:

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth
 - Evolution: adaptation of human traits

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth
 - Evolution: adaptation of human traits
 - Malthusian dynamism

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth
 - Evolution: adaptation of human traits
 - Malthusian dynamism
 - Ultimately triggered the transition from stagnation to growth

• Central characteristics of the period:

- Central characteristics of the period:
 - Positive effect of income on population growth due to:

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - ullet reduction in child mortality, increase in fertility & life expectancy

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period
 - Increased income per capita in the short-run

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period
 - Increased income per capita in the short-run
 - Population increased, as long as income remains above subsistence

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period
 - Increased income per capita in the short-run
 - Population increased, as long as income remains above subsistence
 - Income per capita ultimately returned to its long-run level

- Central characteristics of the period:
 - Positive effect of income on population growth due to:

- reduction in child mortality, increase in fertility & life expectancy
- Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period
 - Increased income per capita in the short-run
 - Population increased, as long as income remains above subsistence
 - Income per capita ultimately returned to its long-run level
- Technologically advanced & land-rich economies had:

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period
 - Increased income per capita in the short-run
 - Population increased, as long as income remains above subsistence
 - Income per capita ultimately returned to its long-run level
- Technologically advanced & land-rich economies had:
 - Higher population density

- Central characteristics of the period:
 - Positive effect of income on population growth due to:
 - reduction in child mortality, increase in fertility & life expectancy
 - Diminishing returns to labor:
 - reflecting the existence of a land constraint
- Technological progress over this period
 - Increased income per capita in the short-run
 - Population increased, as long as income remains above subsistence
 - Income per capita ultimately returned to its long-run level
- Technologically advanced & land-rich economies had:
 - Higher population density
 - Similar levels of income per-capita in the long-run

• The dynamics of Irish economy (1650 - 1850)

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)
 - Triggered by superior agricultural technology & adoption of Maize

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)
 - Triggered by superior agricultural technology & adoption of Maize
- The dynamics of the English economy (1348 1700)

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)
 - Triggered by superior agricultural technology & adoption of Maize
- The dynamics of the English economy (1348 1700)
 - Triggered by the Black Death

ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly

Malthusian Dynamics - Ireland (1650 - 1850)

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly
 - 1845-1852 Potato blight destroys crops ⇒ Great Famine

Malthusian Dynamics - Ireland (1650 - 1850)

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly
 - 1845-1852 Potato blight destroys crops ⇒ Great Famine
 - Population declined by about 2 million (Death & Emigration)

Malthusian Dynamics - Ireland (1650 - 1850)

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly
 - 1845-1852 Potato blight destroys crops ⇒ Great Famine
 - Population declined by about 2 million (Death & Emigration)
 - Income per capita remained nearly unchanged

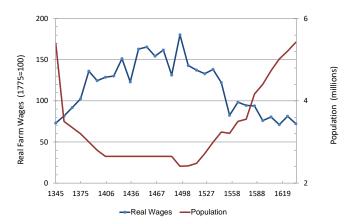
Superior agricultural technology

- Superior agricultural technology
 - 1500-1820

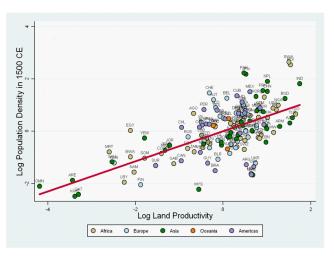
- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600

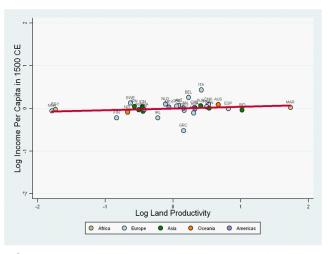

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize
 - 1776-1910


- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize
 - 1776-1910
 - ullet Contributed to 1/5 of China's population growth over the period

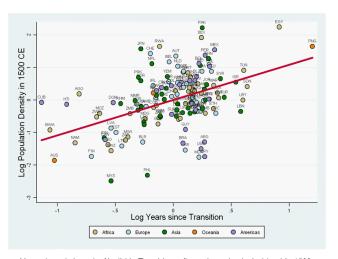
- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize
 - 1776-1910
 - ullet Contributed to 1/5 of China's population growth over the period
 - No impact on income per capita

Malthusian Adjustments to the Black Death: England, 1348–1635



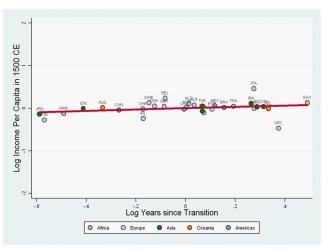
Land Productivity and Population Density in 1500

Conditional on transition timing, geographical factors, and continental fixed effects. Source: Ashraf-Galor (AER 2011)


Land Productivity and Income per Capita in 1500

 $Conditional \ on \ transition \ timing, \ geographical \ factors, \ and \ continental \ fixed \ effects.$

Source: Ashraf-Galor (AER 2011)


Technology and Population Density in 1500

 $Years\ elapsed\ since\ the\ Neolithic\ Transition\ reflects\ the\ technological\ level\ in\ 1500.$

Conditional on land productivity, geographical factors, and continental fixed effects.

Technology and Income per Capita in 1500

Years elapsed since the Neolithic Transition reflects the technological level in 1500.

Conditional on land productivity, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2011)

27 / 67

• The Malthusian pressure affected

- The Malthusian pressure affected
 - The size of the population

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income
 - Higher reproductive success

- The Malthusian pressure affected
 - The size of the populationThe composition of the population
- The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income
 - Higher reproductive success
 - Became more prevalent in the population

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income
 - Higher reproductive success
 - Became more prevalent in the population
- Evolutionary processes (cultural or biological)

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income
 - Higher reproductive success
 - Became more prevalent in the population
- Evolutionary processes (cultural or biological)
 - Raised the prevalence of complementary traits to the growth process

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income
 - Higher reproductive success
 - Became more prevalent in the population
- Evolutionary processes (cultural or biological)
 - Raised the prevalence of complementary traits to the growth process
 - Reinforced the growth process

- The Malthusian pressure affected
 - The size of the population
 - The composition of the population
- Hereditary (physical and cognitive) traits that were complementary to the growth process
 - Generated higher income
 - Higher reproductive success
 - Became more prevalent in the population
- Evolutionary processes (cultural or biological)
 - Raised the prevalence of complementary traits to the growth process
 - Reinforced the growth process
 - Stimulated the take-off from stagnation to growth

• The size & composition of the population fostered technological progress via:

- The size & composition of the population fostered technological progress via:
 - Supply of innovations

- The size & composition of the population fostered technological progress via:
 - Supply of innovations
 - Demand for innovations

- The size & composition of the population fostered technological progress via:
 - Supply of innovations
 - Demand for innovations
 - Diffusion of knowledge

- The size & composition of the population fostered technological progress via:
 - Supply of innovations
 - Demand for innovations
 - Diffusion of knowledge
 - Division of labor

- The size & composition of the population fostered technological progress via:
 - Supply of innovations
 - Demand for innovations
 - Diffusion of knowledge
 - Division of labor
 - Extent of trade

- The size & composition of the population fostered technological progress via:
 - Supply of innovations
 - Demand for innovations
 - Diffusion of knowledge
 - Division of labor
 - Extent of trade
 - Evolution in the prevalence of human capital

The Post-Malthusian Regime

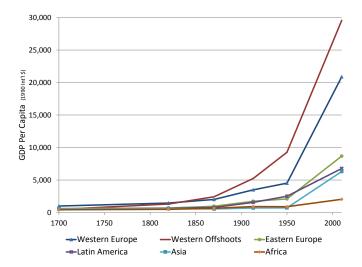
• The onset of economic growth

- The onset of economic growth
- Income per capita still has a positive effect on population growth

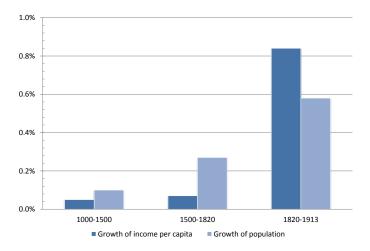
- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:

- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:
 - The size of the population

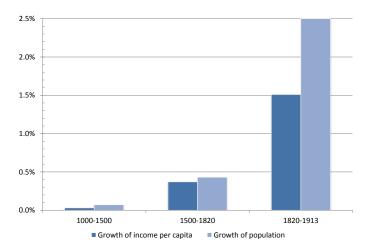
- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:
 - The size of the population
 - The prevalence of growth enhancing traits in the population

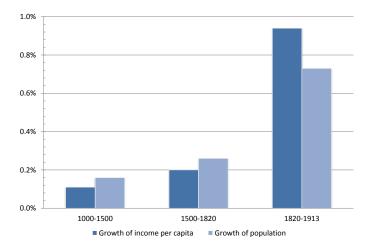

- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:
 - The size of the population
 - The prevalence of growth enhancing traits in the population
 - The rate of technological progress

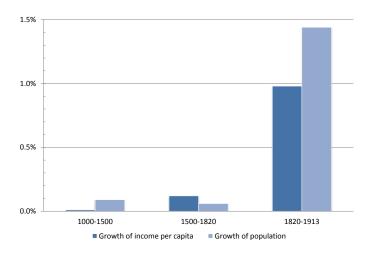
- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:
 - The size of the population
 - The prevalence of growth enhancing traits in the population
 - The rate of technological progress
- Technological progress outpaced biological reproduction:

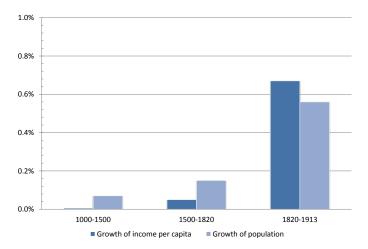

- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:
 - The size of the population
 - The prevalence of growth enhancing traits in the population
 - The rate of technological progress
- Technological progress outpaced biological reproduction:
 - Output increased more than population

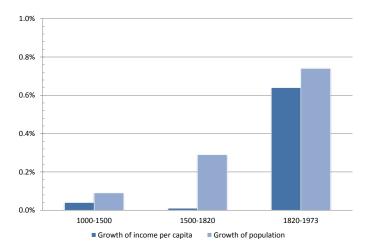
- The onset of economic growth
- Income per capita still has a positive effect on population growth
- Positive feedback loop between population & technology during the Malthusian epoch contributed to:
 - The size of the population
 - The prevalence of growth enhancing traits in the population
 - The rate of technological progress
- Technological progress outpaced biological reproduction:
 - Output increased more than population
 - growth in income per capita

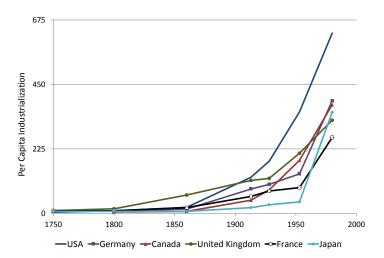

Regional Variation in the Timing of the Take-off

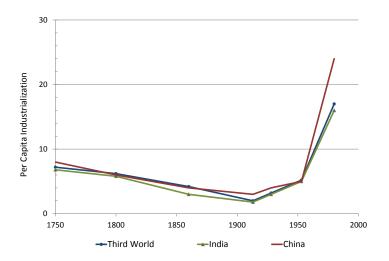

Take-off: Growth of Population & Income per Capita – World


Take-off: Growth of Population & Income per Capita – Western Offshoots


Take-off: Growth of Population & Income per Capita – Western Europe


Take-off: Growth of Population & Income per Capita – Latin America


Take-off: Growth of Population & Income per Capita - Africa


Take-off: Growth of Population & Income per Capita - Asia

Take-off & Increased Industrialization per Capita

Take-off in Developed Economies & Decline in Industrialization in LDCs

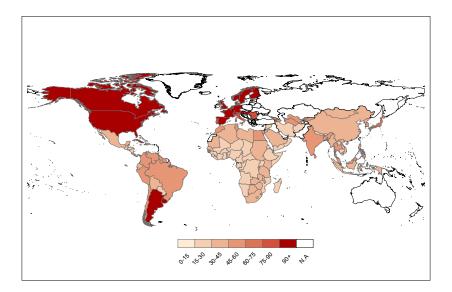
Sustained economic growth

- Sustained economic growth
 - Technological progress accelerates

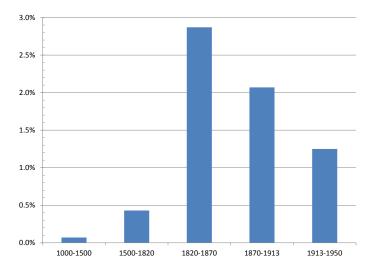
- Sustained economic growth
 - Technological progress accelerates
 - ullet Industrial demand for human capital

- Sustained economic growth
 - Technological progress accelerates
 - ullet Industrial demand for human capital
 - Human capital formation

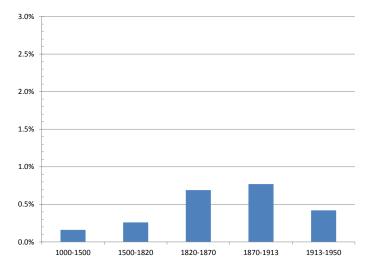
- Sustained economic growth
 - Technological progress accelerates
 - ullet Industrial demand for human capital
 - Human capital formation
 - ullet Decline in fertility rates (substitution of quantity by quality)

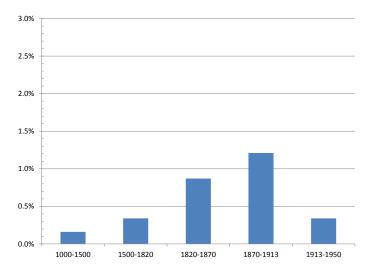

- Sustained economic growth
 - Technological progress accelerates
 - Industrial demand for human capital
 - Human capital formation
 - $\bullet \implies \mathsf{Decline} \; \mathsf{in} \; \mathsf{fertility} \; \mathsf{rates} \; \mathsf{(substitution} \; \mathsf{of} \; \mathsf{quantity} \; \mathsf{by} \; \mathsf{quality)}$
 - The decline in population growth

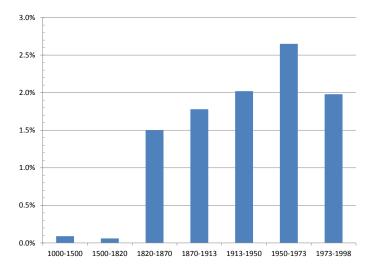
- Sustained economic growth
 - Technological progress accelerates
 - ullet \Longrightarrow Industrial demand for human capital
 - Human capital formation
 - ullet Decline in fertility rates (substitution of quantity by quality)
 - The decline in population growth
 - Freed the growth process from counterbalancing effects of population growth

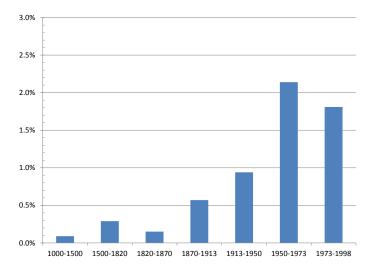

- Sustained economic growth
 - Technological progress accelerates
 - Industrial demand for human capital
 - Human capital formation
 - \implies Decline in fertility rates (substitution of quantity by quality)
 - The decline in population growth
 - Freed the growth process from counterbalancing effects of population growth
 - Technological progress, human capital formation & decline in population growth

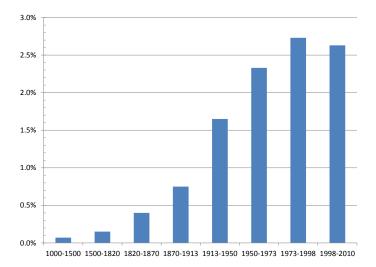
- Sustained economic growth
 - Technological progress accelerates
 - Industrial demand for human capital
 - Human capital formation
 - ullet Decline in fertility rates (substitution of quantity by quality)
 - The decline in population growth
 - Freed the growth process from counterbalancing effects of population growth
 - Technological progress, human capital formation & decline in population growth
 - Sustained economic growth

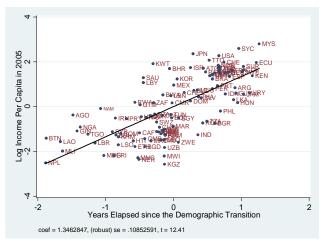

Years Elapsed since the Onset of the Fertility Decline


Early Fertility Decline - Western Offshoots

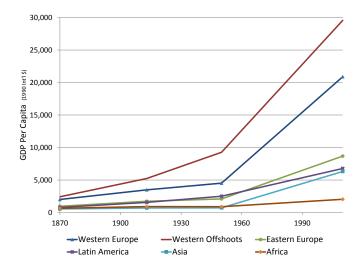

Early Fertility Decline - Western Europe


Early Fertility Decline - Eastern Europe

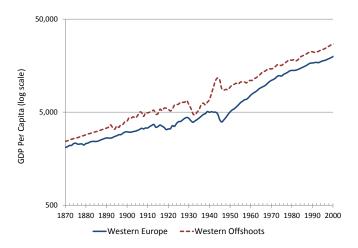

Late Fertility Decline - Latin America


Late Fertility Decline - Asia

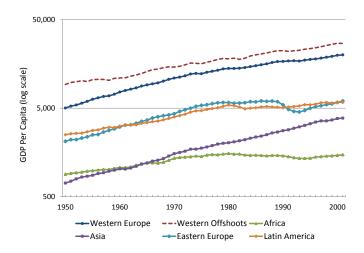
Late Fertility Decline - Africa



Timing of the Demographic Transition and Current Income per Capita



Conditional on absolute latitude.


Timing of the Demographic Transition and Divergence across Regions

Sustained Economic Growth: 1870-2000

Regional Variation in Growth of Income per Capita: 1950-2000

Fundamental Research Questions: The Malthusian Epoch

• What accounts for the epoch of stagnation that characterized most of human history?

Fundamental Research Questions: The Malthusian Epoch

- What accounts for the epoch of stagnation that characterized most of human history?
 - Why had episodes of technological progress in the pre-industrialization era fail to generate sustained economic growth?

Fundamental Research Questions: The Malthusian Epoch

- What accounts for the epoch of stagnation that characterized most of human history?
 - Why had episodes of technological progress in the pre-industrialization era fail to generate sustained economic growth?
 - Why had technological progress generated population growth rather than growth in income per capita?

 What are the factors that generated the transition from stagnation to growth of DCs?

- What are the factors that generated the transition from stagnation to growth of DCs?
- What are the hurdles faced by LDCs in the transition from stagnation to growth?

- What are the factors that generated the transition from stagnation to growth of DCs?
- What are the hurdles faced by LDCs in the transition from stagnation to growth?
- What triggered the demographic transition?

- What are the factors that generated the transition from stagnation to growth of DCs?
- What are the hurdles faced by LDCs in the transition from stagnation to growth?
- What triggered the demographic transition?
- Is the demographic transition a necessary condition for sustained economic growth?

• What accounts for the transition from stagnation to growth in some countries and the persistent stagnation in others?

- What accounts for the transition from stagnation to growth in some countries and the persistent stagnation in others?
- What governs the differential timing of the demographic transition across nations?

- What accounts for the transition from stagnation to growth in some countries and the persistent stagnation in others?
- What governs the differential timing of the demographic transition across nations?
- What is the origin of the vast inequality that emerged across countries in the past two centuries?

- What accounts for the transition from stagnation to growth in some countries and the persistent stagnation in others?
- What governs the differential timing of the demographic transition across nations?
- What is the origin of the vast inequality that emerged across countries in the past two centuries?
- Has the earlier transition of advanced economies adversely affected the process of development in LDCs?

- What accounts for the transition from stagnation to growth in some countries and the persistent stagnation in others?
- What governs the differential timing of the demographic transition across nations?
- What is the origin of the vast inequality that emerged across countries in the past two centuries?
- Has the earlier transition of advanced economies adversely affected the process of development in LDCs?
- What is the contribution of deep rooted factors to the vast inequality across countries?

Inconsistent with the development process over most of human history:

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income
 - GT: does not capture the demographic transition (DT)

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income
 - GT: does not capture the demographic transition (DT)
 - Evidence: DT is central for the take-off to modern growth

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income
 - GT: does not capture the demographic transition (DT)
 - Evidence: DT is central for the take-off to modern growth
 - GT: does not capture the take-off from stagnation to growth

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income
 - GT: does not capture the demographic transition (DT)
 - Evidence: DT is central for the take-off to modern growth
 - GT: does not capture the take-off from stagnation to growth
 - Evidence: key for the understanding of comparative development

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income
 - GT: does not capture the demographic transition (DT)
 - Evidence: DT is central for the take-off to modern growth
 - GT: does not capture the take-off from stagnation to growth
 - Evidence: key for the understanding of comparative development
 - GT: convergence

- Inconsistent with the development process over most of human history:
 - GT: growth rates decline in the transition to sustained growth
 - Evidence: non-decreasing growth rates in the development of DCs
 - GT: technological progress increases steady-state income per capita
 - Malthusian Epoch tech progress had no effect on LR income
 - GT: does not capture the demographic transition (DT)
 - Evidence: DT is central for the take-off to modern growth
 - GT: does not capture the take-off from stagnation to growth
 - Evidence: key for the understanding of comparative development
 - GT: convergence
 - Evidence: divergence in the past two centuries

• Focuses on the proximate causes of growth

- Focuses on the proximate causes of growth
 - Factor Accumulation:

- Focuses on the proximate causes of growth
 - Factor Accumulation:
 - Physical capital accumulation (Solow, QJE 1956)

- Focuses on the proximate causes of growth
 - Factor Accumulation:
 - Physical capital accumulation (Solow, QJE 1956)
 - Human capital accumulation (Lucas, JME 1988)

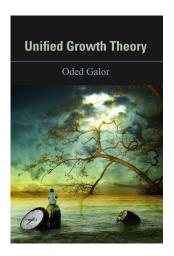
- Focuses on the proximate causes of growth
 - Factor Accumulation:
 - Physical capital accumulation (Solow, QJE 1956)
 - Human capital accumulation (Lucas, JME 1988)
 - Technological Progress:

- Focuses on the proximate causes of growth
 - Factor Accumulation:
 - Physical capital accumulation (Solow, QJE 1956)
 - Human capital accumulation (Lucas, JME 1988)
 - Technological Progress:
 - Endogenous Growth (Romer, JPE 1990; Grossman-Helpman, 1991; Aghion-Howitt, ECT 1992)

• Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime

- Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime
- Not designed to shed light on:

- Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime
- Not designed to shed light on:
 - The origins of vast and persistent inequality across countries


- Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime
- Not designed to shed light on:
 - The origins of vast and persistent inequality across countries
 - The forces that triggered the transition of DCs from stagnation to growth

- Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime
- Not designed to shed light on:
 - The origins of vast and persistent inequality across countries
 - The forces that triggered the transition of DCs from stagnation to growth
 - The hurdles faced by LDCs in their take-off from stagnation to growth

- Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime
- Not designed to shed light on:
 - The origins of vast and persistent inequality across countries
 - The forces that triggered the transition of DCs from stagnation to growth
 - The hurdles faced by LDCs in their take-off from stagnation to growth
 - The factors that hindered convergence across countries

Neoclassical Growth Theory (GT)

- Captures the role of factor accumulation and technological progress among countries that are in the modern growth regime
- Not designed to shed light on:
 - The origins of vast and persistent inequality across countries
 - The forces that triggered the transition of DCs from stagnation to growth
 - The hurdles faced by LDCs in their take-off from stagnation to growth
 - The factors that hindered convergence across countries
 - The historical roots of vast and persistent inequality across countries

• Captures the:

- Captures the:
 - Process of development in its entirety

- Captures the:
 - Process of development in its entirety
 - Forces that permitted the transition from stagnation to growth

- Captures the:
 - Process of development in its entirety
 - Forces that permitted the transition from stagnation to growth
 - Hurdles faced by LDCs in their transitions from stagnation to growth

- Captures the:
 - Process of development in its entirety
 - Forces that permitted the transition from stagnation to growth
 - Hurdles faced by LDCs in their transitions from stagnation to growth
 - The origins of the uneven distribution of wealth across the globe

- Captures the:
 - Process of development in its entirety
 - Forces that permitted the transition from stagnation to growth
 - Hurdles faced by LDCs in their transitions from stagnation to growth
 - The origins of the uneven distribution of wealth across the globe
 - Persistent effect of initial biogeographical factors on the growth process

Policy based on insights from growth theory encourage

- Policy based on insights from growth theory encourage
 - Investment in education and health

- Policy based on insights from growth theory encourage
 - Investment in education and health
 - Openness to international capital markets

- Policy based on insights from growth theory encourage
 - Investment in education and health
 - Openness to international capital markets
 - Technological diffusion

- Policy based on insights from growth theory encourage
 - Investment in education and health
 - Openness to international capital markets
 - Technological diffusion
 - ullet failed to generate universal convergence

- Policy based on insights from growth theory encourage
 - Investment in education and health
 - Openness to international capital markets
 - Technological diffusion
 - ullet failed to generate universal convergence
- Why do some societies fail to:

- Policy based on insights from growth theory encourage
 - Investment in education and health
 - Openness to international capital markets
 - Technological diffusion
 - \implies failed to generate universal convergence
- Why do some societies fail to:
 - Efficiently invest in physical and human capital?

- Policy based on insights from growth theory encourage
 - Investment in education and health
 - Openness to international capital markets
 - Technological diffusion
 - ullet failed to generate universal convergence
- Why do some societies fail to:
 - Efficiently invest in physical and human capital?
 - Adopt advance technologies?

Inequality

- Inequality
 - Suboptimal accumulation of human and physical capital

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)
 - Reduced incentive to accumulate/innovate (North, 1981; Acemoglu-Robinson, 2012)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)
 - Reduced incentive to accumulate/innovate (North, 1981; Acemoglu-Robinson, 2012)
- Ethnic fractionalization

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)
 - Reduced incentive to accumulate/innovate (North, 1981; Acemoglu-Robinson, 2012)
- Ethnic fractionalization
 - Sociopolitical instability & Inefficient provision of public goods

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)
 - Reduced incentive to accumulate/innovate (North, 1981; Acemoglu-Robinson, 2012)
- Ethnic fractionalization
 - Sociopolitical instability & Inefficient provision of public goods
 - Suboptimal investment (Easterly-Levine, QJE 1997; Alesina et al., JEG 2003)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)
 - Reduced incentive to accumulate/innovate (North, 1981; Acemoglu-Robinson, 2012)
- Ethnic fractionalization
 - Sociopolitical instability & Inefficient provision of public goods
 - Suboptimal investment (Easterly-Levine, QJE 1997; Alesina et al., JEG 2003)
- Limited Social capital (limited trust & cooperation)

- Inequality
 - Suboptimal accumulation of human and physical capital
 - Credit market imperfections (Galor-Zeira, RES 1993)
 - Sociopolitical instability (Alesina et al., JEG 1996)
 - Inferior institutions (Engerman-Sokoloff, 1997)
 - Inefficient provision of education (Galor-Moav-Vollrath, RES 2009)
- Inefficient Institutions (limited protection of property rights & rule of law)
 - Reduced incentive to accumulate/innovate (North, 1981; Acemoglu-Robinson, 2012)
- Ethnic fractionalization
 - Sociopolitical instability & Inefficient provision of public goods
 - Suboptimal investment (Easterly-Levine, QJE 1997; Alesina et al., JEG 2003)
- Limited Social capital (limited trust & cooperation)
 - Suboptimal investment (Putnam, 1993; Guiso et al., JEP 2006; Tabellini, JEEA 2010)

Persistent effect of institutions implemented by colonial powers

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)
- Persistent effect of the human capital and diversity brought by the colonists

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2012)

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2012)
- Persistent effect of the legal system of colonial powers

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2012)
- Persistent effect of the legal system of colonial powers
 - Common law (Britain) is more complementary than civil law (France, Spain & Portugal) to the development of financial systems (La Porta et al., JF 1997)

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2012)
- Persistent effect of the legal system of colonial powers
 - Common law (Britain) is more complementary than civil law (France, Spain & Portugal) to the development of financial systems (La Porta et al., JF 1997)
- Persistent effect of artificial borders & ethnic division created by colonists

- Persistent effect of institutions implemented by colonial powers
 - Reversal of fortune (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive institutions imposed in densely populated areas
 - Inclusive institutions implemented in sparsely populated areas
 - Slavery (Nunn, QJE 2008)
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2012)
- Persistent effect of the legal system of colonial powers
 - Common law (Britain) is more complementary than civil law (France, Spain & Portugal) to the development of financial systems (La Porta et al., JF 1997)
- Persistent effect of artificial borders & ethnic division created by colonists
 - Sub-Saharan Africa (Alesina et al., JEEA 2011; Papaioannou-Michalopoulos, ECT 2013)

• Geographical origins and persistence of:

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)
- Religious origins of:

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)
- Religious origins of:
 - Preferences for human capital (Becker-Woessmann, QJE 2009; Botticini-Eckstein, 2012)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)
- Religious origins of:
 - Preferences for human capital (Becker-Woessmann, QJE 2009; Botticini-Eckstein, 2012)
 - Work ethic & thrift & entrepreneurial spirit (Weber, 1905; Andersen et al., 2017)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)
- Religious origins of:
 - Preferences for human capital (Becker-Woessmann, QJE 2009; Botticini-Eckstein, 2012)
 - Work ethic & thrift & entrepreneurial spirit (Weber, 1905; Andersen et al., 2017)
- Intergenerational transmission of:

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)
- Religious origins of:
 - Preferences for human capital (Becker-Woessmann, QJE 2009; Botticini-Eckstein, 2012)
 - Work ethic & thrift & entrepreneurial spirit (Weber, 1905; Andersen et al., 2017)
- Intergenerational transmission of:
 - Preferences for human capital (Galor-Moav, QJE 2002)

- Geographical origins and persistence of:
 - Trust & Cooperation (Durante, 2010; Litina, 2016)
 - Cultural diversity (Ashraf-Galor, 2012)
 - Female labor force participation (Alesina et al., QJE 2013)
 - Time preference (Galor and Ozak, AER 2016)
 - Loss Aversion (Galor and Savitskiy (2018)
- Religious origins of:
 - Preferences for human capital (Becker-Woessmann, QJE 2009; Botticini-Eckstein, 2012)
 - Work ethic & thrift & entrepreneurial spirit (Weber, 1905; Andersen et al., 2017)
- Intergenerational transmission of:
 - Preferences for human capital (Galor-Moav, QJE 2002)
 - Entrepreneurial spirit & thrift (Deopke-Zilibotti, QJE 2008; Galor-Michalopoulos, JET 2012)

Biogeographical conditions that triggered the Neolithic Revolution

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)
 - Persistent effect on population density (1-1500) (Ashraf-Galor, AER 2011)

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)
 - Persistent effect on population density (1-1500) (Ashraf-Galor, AER 2011)
 - No effect on contemporary income per capita (Ashraf-Galor, AER 2013)

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)
 - Persistent effect on population density (1-1500) (Ashraf-Galor, AER 2011)
 - No effect on contemporary income per capita (Ashraf-Galor, AER 2013)
- Disease environment.

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)
 - Persistent effect on population density (1-1500) (Ashraf-Galor, AER 2011)
 - No effect on contemporary income per capita (Ashraf-Galor, AER 2013)
- Disease environment.
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, 2016)

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)
 - Persistent effect on population density (1-1500) (Ashraf-Galor, AER 2011)
 - No effect on contemporary income per capita (Ashraf-Galor, AER 2013)
- Disease environment.
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, 2016)
- Geographical isolation

- Biogeographical conditions that triggered the Neolithic Revolution
 - Technological head-start: (Diamond, 1997; Olsson-Hibbs, EER, 2005)
 - Persistent effect on population density (1-1500) (Ashraf-Galor, AER 2011)
 - No effect on contemporary income per capita (Ashraf-Galor, AER 2013)
- Disease environment.
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)

• Range of soil quality

- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)

- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)

- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops

- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014; Mayshar-Moav-Neeman-Pascalli, 2019)

Land suitable for large plantations

- Land suitable for large plantations
 - Inequality:

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods

Persistent Effects of Geographical Factors

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows the transition to modern growth (Galor-Mountford, RES 2008)

• Evolution of traits that are complementary to the growth process:

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)
- Population diversity within a society:

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)
- Population diversity within a society:
 - Reduces cohesiveness:

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)
- Population diversity within a society:
 - Reduces cohesiveness:
 - Higher cultural fragmentation (Ashraf-Galor, AER-PP 2013)

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)
- Population diversity within a society:
 - Reduces cohesiveness:
 - Higher cultural fragmentation (Ashraf-Galor, AER-PP 2013)
 - Increased mistrust & prevalence of civil conflict (Arbatli-Ashraf-Galor-Klem, ECMA 2019)

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)
- Population diversity within a society:
 - Reduces cohesiveness:
 - Higher cultural fragmentation (Ashraf-Galor, AER-PP 2013)
 - Increased mistrust & prevalence of civil conflict (Arbatli-Ashraf-Galor-Klem, ECMA 2019)
 - Generates a wider range of complementarity traits conducive for innovations

- Evolution of traits that are complementary to the growth process:
 - Preference for education (Galor-Moav, QJE 2002; Galor-Klemp, Nature E&E, 2019)
 - Entrepreneurial spirit (Galor-Michalopoulos, JET 2012)
- Genetic distance between societies reduces:
 - Diffusion from the technological frontier (Spolaore-Wacziarg, QJE 2009)
 - Interstate wars (Spolaore-Wacziarg, 2013)
- Population diversity within a society:
 - Reduces cohesiveness:
 - Higher cultural fragmentation (Ashraf-Galor, AER-PP 2013)
 - Increased mistrust & prevalence of civil conflict (Arbatli-Ashraf-Galor-Klem, ECMA 2019)
 - Generates a wider range of complementarity traits conducive for innovations
 - Has a hump-shaped effect on productivity (Ashraf-Galor, AER 2013, Ashraf-Galor, JEL, 2018)

Lower income in overly homogenous & diverse societies