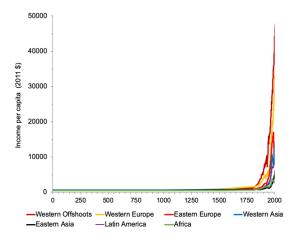
The Demographic Transition

Oded Galor

February 19, 2023

Oded Galor

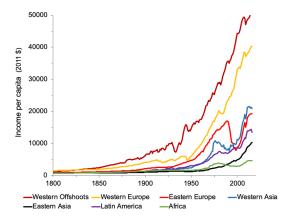

	uct	

Two Mysteries

- The Mystery of Growth:
 - What are the roots of the dramatic improvement in living standards in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of Inequality
 - What is the origin of the vast inequality in income per capita across countries and regions?

Int		

Metamorphosis: Income per Capita: 1-2020



Data Source: Maddison Project (2020)

Int				

Two Mysteries

Great Divergence: 1800–2018

Data Source: Maddison Project (2020)

Resolution of these Mysteries

- Requires the identification of:
 - Forces that permitted the transition from stagnation to growth
 - The origins of the differential timing of the transition across the globe
 - The role of historical & pre-historical factors in this process
- Provides important insights about:
 - Design of strategies to mitigate inequality across the globe

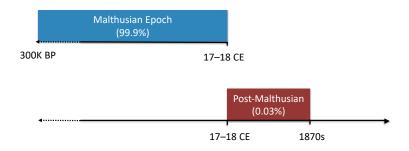
- The demographic transition is critical for the understanding of:
 - The timing of the transition from stagnation to growth
 - The vast inequality across countries and regions
- The forces that triggered the onset of the demographic transition
 - Central to the resolution of the mysteries of growth & inequality

Phases of Development

- The Malthusian Epoch
- The Post-Malthusian Regime
- The Modern Growth Regime

	uction

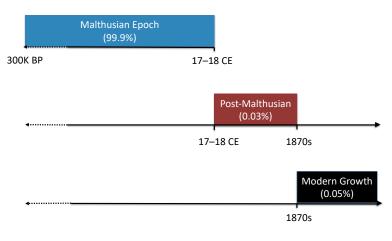
Timeline


Phases of Development: Timeline in the Most Developed Economies

	ucti	

Timeline

Phases of Development: Timeline of the Most Developed Economies



	uction

Oded Galo

Timeline

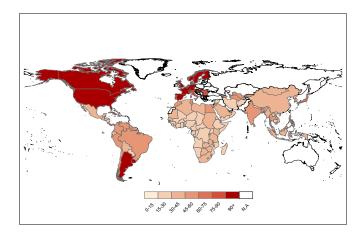
Phases of Development: Timeline of the Most Developed Economies

r The Demographic Transition	February 19, 2023	10 / 1
------------------------------	-------------------	--------

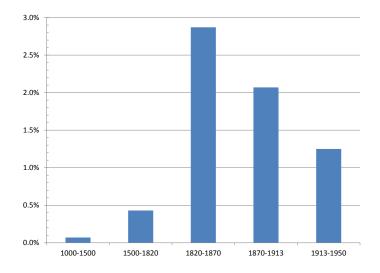
	ucti	

Timeline

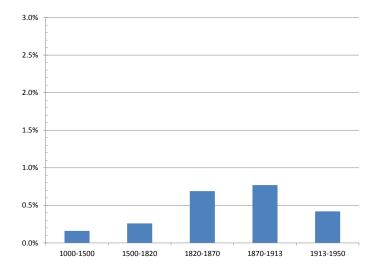
The Transition to the Modern Growth Regime

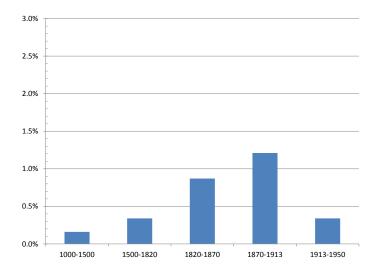

- The rotation of the 'Wheels of Change' intensified
 - $\bullet\,$ Population size & composition $\,\,\Rightarrow\,\,$ Technological progress
 - $\bullet\,$ Technological progress $\,\,\Rightarrow\,\,$ Population size & composition
- Technological progress accelerated & ultimately reaching a critical threshold
 - Human capital became essential for coping with the rapidly changing technological environment
- Human capital formation triggered a reduction in fertility (quantity-quality trade-off)
 - The Malthusian equilibrium vanished
 - Growth was freed from the counterbalancing effect of population
- Tech progress & human capital formation & decline in population growth
 - $\bullet \ \Rightarrow \ {\sf Sustained} \ {\sf economic} \ {\sf growth}$

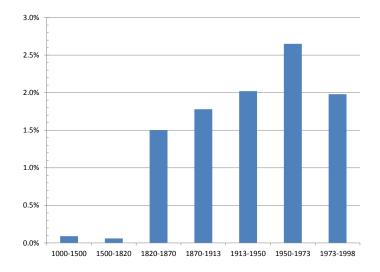
The Demographic Transition

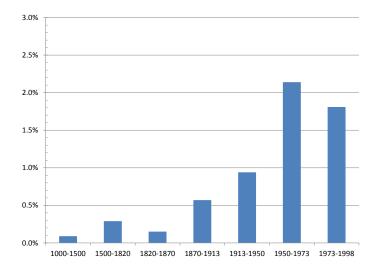

- Reversal of the positive relationship between income and population
- Fertility, mortality & population growth decline very rapidly
- The potential impact of technological progress on economic prosperity
 - No longer counterbalanced by population growth
 - $\bullet \implies \mathsf{Transition} \text{ to Modern Growth}$

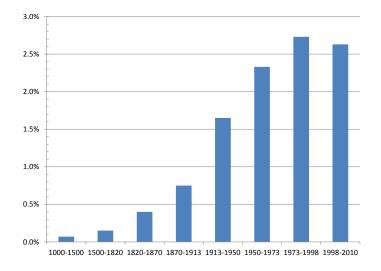
Regional Variations


Years Elapsed since the Onset of the Fertility Decline


Early Fertility Decline - Western Offshoots

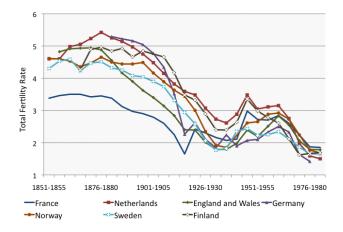

Early Fertility Decline - Western Europe


Early Fertility Decline – Eastern Europe

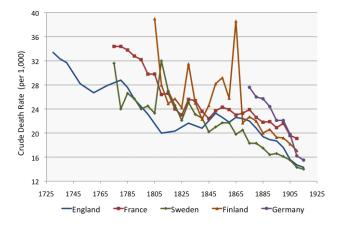

Late Fertility Decline - Latin America


Late Fertility Decline – Asia

Late Fertility Decline – Africa

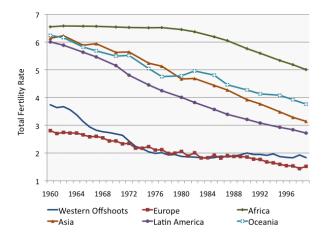


Timing of the Demographic Transition and Current Income per Capita

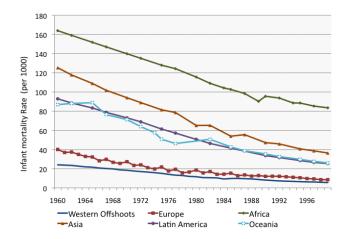


Regional Variations

The Demographic Transition in Western Europe: Total Fertility Rates



Mortality Decline Western Europe: 1730-1920


Regional Variations

The Evolution of Total Fertility Rate across Regions, 1960-2000

Regional Variations

Decline in infant mortality rates across regions, 1960-2000

- The Rise in Income (Becker, 1960)
 - The cost of raising children is primarily parental time
 - The rise in income increased the opportunity cost of raising children
 - \Rightarrow Reduction in fertility (Becker, 1960)
 - $\bullet\,$ The income elasticity w/r to child quality is larger than that w/r to quantity
 - $\bullet\,$ The rise in income $\,\,\Rightarrow\,\,$ substitution of child quality for quantity
 - \Rightarrow Reduction in fertility (Becker and Lewis, JPE 1973)

- The Decline in Child Mortality
 - In an environment characterized by higher child mortality
 - Higher birth is required to attain the desirable number of children
 - The decline in child mortality
 - Reduced the birth rate needed to achieve the desirable # of children
 - $\bullet \hspace{0.1in} \Rightarrow \hspace{0.1in} \mathsf{Reduction} \hspace{0.1in} \mathsf{in} \hspace{0.1in} \mathsf{fertility}$

- The Old-Age Security Hypothesis (Caldwell, 1976)
 - In an environment characterized by limited financial markets
 - Children can provide old-age support
 - Children are partly a form of an investment good
 - Development of financial markets
 - $\bullet \ \Rightarrow \ {\sf Reduced \ the \ demand \ for \ children \ as \ an \ investment \ good}$
 - $\bullet \ \Rightarrow \ \mathsf{Reduction} \ \mathsf{in} \ \mathsf{fertility}$

- The Decline in the Gender Wage Gap (Galor-Weil, AER 1996)
 - The process of development decreased the gender gap
 - Mechanization Female-biased technological progress
 - The rise in the relative wages of women:
 - Opportunity cost of raising children] \uparrow > [family income] \uparrow
 - \Rightarrow Reduction in fertility

• The Rise Human Capital Formation

- Industrial demand for human capital increased the return to human capital (Galor and Weil, AER 2000)
 - $\bullet \ \Rightarrow \ Human \ capital \ formation$
 - $\bullet \ \Rightarrow$ Substitution of child quality for quantity
 - $\bullet \ \Rightarrow \mathsf{Reduction} \ in \ fertility$
- Adaptation in the composition of human traits (Galor and Moav, QJE 2002, Galor and Klemp, Nature EE, 2019)
 - Increase in the prevalence of predisposition towards child quality
 - $\bullet \ \Rightarrow$ Substitution of child quality for quantity
 - $\bullet \ \Rightarrow \ {\sf Reduction} \ {\sf in} \ {\sf fertility}$

heories

The Rise in Income - Main Hypothesis

- The Rise in Income (Becker, 1960)
 - The cost of raising children is primarily parental time
 - The rise in income increased the opportunity cost of raising children
 - \Rightarrow Reduction in fertility (Becker, 1960)
 - The income elasticity w/r to child quality is larger than w/r to quantity
 - The rise in income \Rightarrow substitution of child quality for quantity
 - \Rightarrow Reduction in fertility (Becker and Lewis, JPE 1973)

The Rise in Income: Mechanism

- Child rearing is time-intensive
- Household's Budget constraint

$$y\tau n + c \leq y$$

- $y \equiv$ household's income
- $c \equiv$ household's consumption
- $n \equiv$ household's children
- $\tau \equiv$ time cost per child
- $y\tau \equiv$ opportunity cost of raising a child
- Equivalently

$$c \le y - y\tau n = y(1 - \tau n)$$

- $1 \equiv$ household's time endowment
- $\tau n \equiv$ time spent raising children
- $(1 \tau n) \equiv$ labor force participation

Th	e	Rise	ir
Th	e	Rise	ir

The Rise in Income: Mechanism

Theories

- The rise in income generates two conflicting effects:
 - An income effect:

$$y\tau n + c \leq [y]$$
 \Uparrow

n Income

- More income can be devoted to raising children
 operates towards n ↑
- A substitution effect:

$$\Uparrow [y\tau]n + c \leq y$$

The opportunity cost of raising children increases
 operates towards n ↓

The Rise in Income: Mechanism

- The Beckerian Hypothesis
 - The substituting effect dominates at a higher level of income
 - As income increases fertility declines
 - Fertility declines in the process of development (in which income increases)

Theories	The Rise in Income	

The Rise in Income - Theoretical Evaluation

- Preference-based theory
 - Assumes innate bias against child quantity beyond a certain level of income
- Non-robust
 - Different preferences will generate qualitatively different results
 - Homothetic preferences: a rise in income will NOT trigger fertility decline

heories

The Rise in Income - Homothetic Preferences

• Preferences:

$$u = n^{\gamma} c^{(1-\gamma)} \qquad \qquad 0 < \gamma < 1$$

Budget constraint

$$y\tau n + c \leq y$$

• Optimization: (fraction $\gamma\,$ of income is spent on children and $(1-\gamma)\,$ on consumption)

$$y au n = \gamma y$$

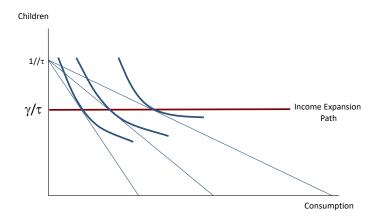
 $c = (1 - \gamma) y$

heories	The Rise in Income

The Rise in Income - Homothetic Preferences

• Optimal number of children $[y\tau n = \gamma y]$

$$n = \gamma / \tau$$


ullet \Rightarrow Income has no effect on fertility, i.e.,

|Income effect| = |Substitution effect|

• Fertility is unaffected by the rise in income

Theories

The Rise in Income - Homothetic Preferences

- 1 = Household's time endowment
- $\gamma=$ The optimal time devoted to children ($\gamma/ au=$ optimal number of children)
 - $\bullet\,\,\Rightarrow\,$ number of children is independent of the level of income

Oded Galor

The Demographic Transition

heories

The Rise in Income: Testable predictions

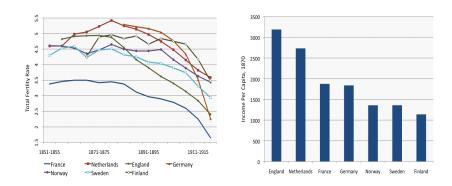
- Cross-Country
 - The timing of the fertility decline is inversely related to the level of income per capita
- Within an economy
 - The number of (surviving) children is inversely related to their levels of income across households

neories

The Rise in Income: Refuting Cross Country Evidence

• Cross Section of Countries (1870-2000)

• Income per worker is positively associated with fertility rates, accounting for mortality rates and education (Murtin, RESTAT 2015).


Western Europe

• The DT occurred within the same decade across countries that differed significantly in their income per capita

Theories				

The Rise in Income

Simultaneous DT despite large gaps in income: W. Europe in the 1870s

he		

The Rise in Income: Refuting Evidence from Individual Countries

- France (1876–96)
 - Income per capita had a positive effect on fertility rates during France's demographic transition, accounting for education, the gender literacy gap, and mortality rates (Murphy JOEG 2015)
- England (During the DT):
 - The rise in income had led to an increase in fertility rates (Fernandez Villaverde, 2001)
- England (pre-industrialization)
 - Reproductive success increases with income (Clark (JEH 2006, De la Croix et al.,, JEG 2019)

The Decline in Child Mortality - Main Hypothesis

- Parents generates utility from the number of surviving children
- In an environment characterized by higher child mortality
 - Higher birth is required to attain the desirable number of children
- The decline in child mortality
 - Reduced the birth rate needed to achieve the desirable # of children
 - \Rightarrow Reduction in fertility

Theories

The Decline in Mortality – Mechanism

• Preferences:

$$u = n^{\gamma} c^{(1-\gamma)} \qquad \qquad 0 < \gamma < 1$$

- $c \equiv$ household's consumption
- $n \equiv$ household's surviving children
- Surviving children

$$n = (1 - \theta)n^b$$

- $n^b \equiv$ household's children born
- $\theta \equiv$ child mortality rate

The Decline in Mortality – Mechanism

Budget constraint

$$y\tau n + c \leq y$$

- $y \equiv$ household's income
- $c \equiv$ household's consumption
- $\tau \equiv$ time cost of raising a surviving child
- $y\tau \equiv$ opportunity cost of raising a surviving child
- $0 \equiv$ time cost of raising a non-surviving child

The Decline in Mortality – Mechanism

• Optimization:

$$y \tau n = \gamma y$$

 $c = (1 - \gamma) y$

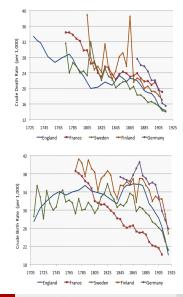
• Optimal number of surviving children (NRR - Net Reproduction Rate)

$$n = \gamma / \tau$$

• Optimal number of children born (TFR - Total Fertility Rate)

$$n^{b} = \frac{n}{(1-\theta)} = \frac{\gamma}{(1-\theta)\tau}$$

The Decline in Mortality – Testable Predictions


- Child mortality rate, θ , has
 - A positive effect on TFR

•
$$n^b = \gamma / [\tau(1-\theta)]$$
 increases in θ

- No effect on NRR
 - $n = \gamma / \tau$ is independent of θ

Theories

The Decline in Mortality and Fertility (TFR) - Evidence

Oded Galor

The Demographic Transition

The Decline in Child Mortality - Challenging Evidence to the Theory

- Worldwide
 - NRR and TFR plummet jointly during the demographic transition
 - Basic theory \Rightarrow NO decline in NRR
- NRR would decline if:
 - There exists a precautionary demand for children
 - RA with respect to fertility > RA with respect to consumption (False)
 - Replacement fertility is insignificant (False; empirical estimates 0.2-0.6)
 - Resources saved from investment in non-surviving children are not channeled towards higher fertility

The Decline in Child Mortality - Challenging Evidence to the Theory

- France, USA & Some LDCs:
 - The decline in mortality did NOT precede the decline in fertility
- Western Europe
 - No change in the patterns of mortality decline at the time of the sharp decline in fertility
- England:
 - The decline in mortality started in England in the 1720s $_{(150\ years\ before\ the\ fertility\ decline)}$ and was accompanied by a rise in fertility rates til 1800

The Decline in Mortality: Refuting Evidence from Individual Countries

- France (1876–96):
 - Mortality rate had no effect on fertility during France's demographic transition, accounting for education, income, and the gender literacy gap. (Murphy JOEG 2015)
- England (1861–1951):
 - The force associated with the decline in child mortality would have led to an increase in fertility rates (Fernandez Villaverde, 2001; Doepke, J.Pop.E 2005)

The Old-Age Security Hypothesis

- In an environment characterized by limited financial markets
 - Children can provide old-age support
 - Children are (partly) a form of an investment good
- Development of financial markets
 - $\bullet \ \Rightarrow \ {\sf Reduced \ the \ demand \ for \ children \ as \ an \ investment \ good}$
 - $\bullet \ \Rightarrow \ {\sf Reduction \ in \ fertility}$

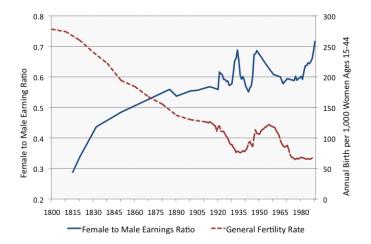
The Old-Age Security Hypothesis - Challenge to the Theory

- Old-age support is unlikely to be a major determinant of fertility & 30–50% decline in fertility during the DT
 - Rare examples in nature of offspring that support their parents
 - Life expectancy till 1750 fluctuating between 25-40
 - Institutions that provided old age support were formed before the DT
 - Richer individuals had better access to financial markets prior to the DT
 - $\bullet \ \Rightarrow$ Lower need for children as investment good
 - BUT had HIGHER reproductive success

The Decline in the Gender Wage Gap

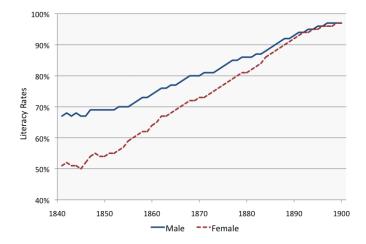
- The process of development decreased the gender gap
 - Mechanization Female-biased technological progress
- The rise in the relative wages of women:
 - [opportunity cost of raising children] \uparrow > [family income] \uparrow
 - $\bullet \ \Rightarrow \ \ {\sf Reduction \ in \ fertility}$

Mechanism: I. Development and Women's Wages


- Female-Biased technical change
 - Mechanization and advanced technologies have complemented mental tasks more than physical tasks
 - Women have physiological comparative advantage in mental (rather than physical) tasks
- The process of development has increased the productivity of women relative to men:
 - Economic Development $\rightarrow (w^F/w^M)$ \uparrow

•
$$w^F \equiv$$
 women's wages

• $w^M \equiv \text{men's wages}$


Theories

Evolution of the Gender Earning Ratio - US

Theories

Evolution of the Gender Literacy Gap - England

Mechanism: II. Women's Relative Wages and Fertility

- Child rearing is time-intensive
- Women are the prime care-takers engaged in child rearing
- Budget constraint (if only women raise children)

$$w^F \tau n + c \le w^M + w^F$$

•
$$w^F + w^M \equiv$$
 household's income

- $c \equiv$ household's consumption
- $n \equiv$ household's (surviving) children
- $\tau \equiv$ time cost per child
- $w^F \tau \equiv$ opportunity cost of raising a child

Mechanism: II. Women's Relative Wages and Fertility

- The rise in women's wages, w^F , generates two conflicting effects:
 - An income effect:

$$w^F \tau n + c \le w^M + [w^F] \Uparrow$$

- More income for raising children \implies operates towards $n \Uparrow$
- A substitution effect:

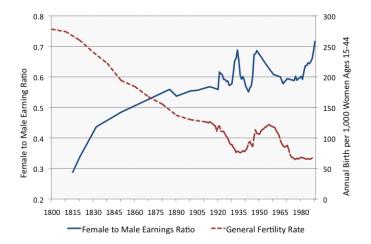
$$\Uparrow [w^F \tau] n + c \le w^M + w^F$$

• Opportunity cost of children increases \implies operates towards $n \Downarrow$

.The Decline in the Gender Wage Gap

• If women work and raise children, an increase in w^F increases the opportunity cost of raising children more than family incomei.e.,

$$w^F \Uparrow \implies |\mathsf{Income effect}| < |\mathsf{Substitution effect}|$$


 \implies $n \Downarrow$ (even if preferences are homothetic)

• A rise in men's wages generate only an income effect

$$w^F \tau n + c \leq [w^M] \Uparrow + [w^F]$$

 \Rightarrow operates towards $n \uparrow$

Women's Relative Wages and Fertility - US

Women's Relative Wages and Fertility - Evidence

Sweden (1936-1955)

• $[w^F \Uparrow \implies n \Downarrow]$ & $[w^M \Uparrow \implies n \Uparrow]$ (Heckman and Walker (ECT 1990))

- Sweden (19th century)
 - (w^F/w^M) $\Uparrow \implies n \Downarrow$ Schultz (1985)
- France (1876–1896):
 - Reduction in the gender literacy gap had an adverse effect on fertility, accounting for income per capita, educational attainment, and mortality rates (Murphy JOEG 2015)

The Rise Human Capital Formation

- Industrial demand for human capital increased the return to human capital (Galor and Weil, AER 2000)
 - HC enabled individuals to cope with changing technological environment
 - $\bullet \ \Rightarrow HC$ formation \Rightarrow Substitution of child quality for quantity
 - $\bullet \ \Rightarrow \ {\sf Reduction} \ {\sf in} \ {\sf fertility}$
 - Reinforced by:
 - The increased in life expectancy (the duration of the return in HC)
 - The decline in child labor (reduction in the profitability of children)
 - Increase urbanization (higher return to HC & cost of children)
- Adaptation of human traits (Galor and Moav, QJE 2002, Galor and Klemp, Nature EE, 2019)
 - An increase in the prevelance of predisposition towards child quality
 - $\bullet \ \Rightarrow$ Substitution of child quality for quantity
 - $\bullet \ \Rightarrow \mathsf{Reduction} \ \mathsf{in} \ \mathsf{fertility}$

The Model - Preferecnes

$$u = (1 - \gamma) \ln c + \gamma [\ln n + \beta \ln h]$$

- $c \equiv \text{consumption}$
- $n \equiv (surviving)$ children
- $h \equiv$ quality (human capital) of each child
- $\beta\equiv$ degree of preference for child quality; eta<1

The Model - Budget Constraint

 $yn(\tau^q+\tau^e e)+c\leq y$

- $y \equiv$ household potential income
- $\tau^q \equiv$ fraction of the household's unit-time endowment required to raise a child, regardless of quality
- $\tau^e \equiv$ fraction of the household's unit-time endowment required for each unit of education per child
- $(\tau^q + \tau^e e) \equiv$ time cost of raising a child with education level (quality) e
- $y(\tau^q + \tau^e e) \equiv$ opportunity cost of raising a child with quality e

Testable Predictions - Investment in Quality

The optimal level of investment in child quality increases if:

• The technological environment changes more rapidly

 $\partial e(g,\beta,\tau^e,\tau^q)/\partial g>0$

• Preferences for child quality are higher

 $\partial e(g,\beta,\tau^e,\tau^q)/\partial\beta>0$

• The cost of raising a child (regardless of quality) increases

$$\partial e(g,\beta,\tau^e,\tau^q)/\partial \tau^q>0$$

• The cost of educating a child decreases

$$\partial e(g,\beta,\tau^e,\tau^q)/\partial \tau^e < 0$$

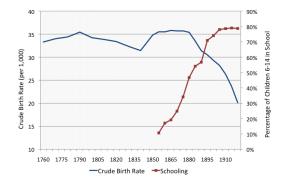
Testable Predictions - Investment in Quantity

The optimal number of children decreases if:

• The technological environment changes more rapidly

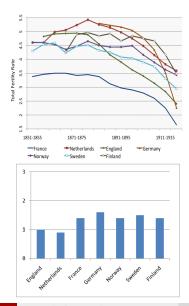
 $\partial n/\partial g < 0$

• Preferences for child quality are higher


 $\partial n/\partial \beta < 0$

- The cost of raising a child (regardless of quality) increases $\partial n/\partial \tau^q < 0$
- The cost of educating a child increases and the elasticity of child quality with respect to the cost of child quality is smaller than one in absolute value

 $\partial n/\partial \tau^{e} < 0$ if $[\partial e/\partial \tau^{e}][\tau^{e}/e] > -1$


Theories

Human Capital Formation and the Fertility Decline - England

Theories

Growth Rates 1870-1913 and DT

Supporting Evidence

- US (1880-1910):
 - Eradication of hookworm (1910s) a positive shock to the return to child quality
 - Adverse effect on fertility (Bleakley-Lange, RESTAT 2009)
 - Opening of kindergartens an increase in the return to education
 - Adverse effect on fertility (Ager-Cinnirella, 2020)
- Prussia (19th century):
 - The rise in human capital formation (IV: Land concentration & Distance from the birthplace of Protestantism Wittenberg)
 - Adverse effect on fertility (Becker-Cinnirella-Woessmann, JOEG 2010)
- France (1876–96):
 - Adverse effect of education attainment on fertility rates (Murphy JOEG 2015)

Supporting Evidence

- England (1580-1871)
 - Adverse effect of family size on children's literacy. (Klemp-Weisdorf, EJ 2019)
- China (13th-20th century)
 - Changes in the civil service examination system increase the return to human capital
 - Adverse effect on family size (Shiue, JOEG 2017)
- Ireland (1911)
 - Adverse effect of education attainment on fertility rates (Fernihough, JOEG 2017)

Appendix

Appendix - Optimization

$$h = h(e,g)$$

•
$$h_e(e,g) > 0$$
 & $h_{ee}(e,g) < 0$

• HC is increasing (in decreasing rates) in the parental time investment in the education of the child

•
$$h_g(e,g) < 0$$
 & $h_{gg}(e,g) > 0$

- HC is decreasing in the rate of technological progress (obsolescence of HC in a changing technological environment)
- $h_{eg}(e,g) > 0$
 - Education lessens the obsolescence of HC in a changing technological environment
- $h(0,g) > 0 \& \lim_{e \to 0} h_e(e,g) = \infty; \lim_{e \to \infty} h_e(e,g) = 0$
 - Basic level of human capital & interior solution

Optimization

$$\{n, e\} = \arg \max \gamma [\ln n + \beta \ln h(e, g)] + (1 - \gamma) \ln y [1 - n(\tau^q + \tau^e e)]$$

with respect to *n*:

$$\frac{\gamma}{n} = \frac{(1-\gamma)y(\tau^q + \tau^e e)}{y[1-n(\tau^q + \tau^e e)]}$$
$$\gamma[1-n(\tau^q + \tau^e e)] = (1-\gamma)(\tau^q + \tau^e e)n$$

$$n(\tau^q + \tau^e e) = \gamma$$

Optimization

$$\{n, e\} = \arg \max \gamma [\ln n + \beta \ln h(e, g)] + (1 - \gamma) \ln y [1 - n(\tau^q + \tau^e e)]$$

with respect to e:

$$\frac{\gamma\beta h_e(e,g)}{h(e,g)} = \frac{(1-\gamma)yn\tau^e}{y[1-n(\tau^q+\tau^e e)]}$$

since $n(\tau^q + \tau^e e) = \gamma$

$$\frac{\gamma\beta h_e(e,g)}{h(e,g)} = n\tau^e \implies \frac{\beta h_e(e,g)}{h(e,g)} = \frac{\tau^e}{(\tau^q + \tau^e e)}$$

$$\beta h_e(e,g)(\tau^q + \tau^e e) = \tau^e h(e,g)$$

Optimization

$$n = \gamma / (\tau^{q} + \tau^{e} e)$$

$$\tau^{e} h(e,g) = \beta h_{e}(e,g)(\tau^{q} + \tau^{e} e)$$

$$e = e(g, \beta, \tau^{e}, \tau^{q}),$$
$$n = \gamma / [\tau^{q} + \tau^{e} e(g, \beta, \tau^{e}, \tau^{q})]$$